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1 核医学物理基础 (Physics of Nuclear Medicine)
本章主要介绍核医学成像（Nuclear Medicine Imaging）所需的物理学基础，重点在

于放射性核素的性质、衰变规律以及射线与物质的相互作用。与 MRI 利用磁场和射频
脉冲不同，核医学主要利用不稳定的放射性核素发射的 γ 射线进行成像。

1.1 原子结构与核素分类

核医学利用的是原子核的不稳定性。我们需要区分几种常见的核素概念（基于原子

序数 Z 和质量数 A 的关系）：

• 同位素 (Isotopes): Z 相同，A 不同。化学性质几乎相同（如 12C 和 11C）。

• 同量素 (Isobars): A 相同，Z 不同。属于不同的元素（如 11C 和 11B）。

• 同中子异核素 (Isotones): 中子数 (N = A− Z) 相同，A 不同。

• 同质异能素 (Isomers): A 和 Z 都相同，但处于不同的能级状态。高能态通常

用”m” 表示（如 99mTc 和 99Tc）。这是 SPECT 成像中非常重要的概念。

1.2 放射性衰变 (Radioactive Decay)

1.2.1 基本概念

不稳定核素（母核 Parent）自发地释放能量或粒子，转变为更稳定的核素（子核
Daughter）的过程称为放射性衰变。

• 裂变 (Disintegration): 放射性原子核发生衰变的过程，伴随着能量释放。

• 随机性: 衰变是自发的（Spontaneous），不受外界碰撞影响。

1.2.2 四种主要的衰变模式

1. α 衰变 (Alpha Decay):

• 释放氦核 (42He)。

• 常见于重核 (Z > 82)，因质子中子比例失衡。

• 特点：粒子大，穿透力弱，不用于常规体内成像。

2. β− 衰变 (Beta Minus Decay):

• 核内中子过多时发生：中子 → 质子 + 电子 (e−) + 反中微子。

• A 不变，Z 增加 1。
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3. β+ 衰变 (Positron Decay / Beta Plus): 【PET 成像的核心】

• 核内质子过多时发生：质子 → 中子 + 正电子 (e+) + 中微子。

• A 不变，Z 减少 1。

• 常见的正电子发射体：11C,13 N,15 O,18 F。

• 注：虽然 PPT 此处未详细展开湮灭反应，但这是 PET 成像的基础，即正电
子与电子结合产生光子。

4. γ 衰变与同质异能跃迁 (Isomeric Transition):

• 原子核从高能态跃迁到低能态，发射高能光子（γ 射线）。

• 常见例子：99mTc 发射 140 keV 的 γ 射线，是 SPECT 最常用的核素。

• γ 射线本质上是电磁波，与 X 射线性质相似，区别在于产生源头：X 射线来
自电子能级跃迁或减速，γ 射线来自原子核。

1.3 放射性测量与衰变定律

1.3.1 测量单位

• Becquerel (Bq): 国际单位，1 Bq = 1 次衰变/秒 (dps)。

• Curie (Ci): 传统单位，定义为 1 g 镭的放射性。

• 换算关系：1 Ci = 3.7× 1010 Bq。

• 常用量级：1 mCi = 37 MBq。

1.3.2 辐射强度与距离 (Inverse Square Law)

辐射强度 I 与距离 r 的平方成反比：

I =
A · E
4πr2

(1)

其中 A 为放射性活度，E 为光子能量。

1.3.3 衰变定律 (Decay Law)

放射性核素的数量 N(t) 随时间呈指数衰减：

N(t) = N0e
−λt 或 A(t) = A0e

−λt (2)

其中 λ 为衰变常数。
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1.3.4 半衰期 (Half-life)

• 物理半衰期 (t1/2): 活度减少到初始一半所需的时间。

t1/2 =
ln 2
λ

≈ 0.693

λ
(3)

• 生物半衰期 (TB): 指放射性物质通过生物代谢排出体外减少一半的时间。

• 有效半衰期 (TE): 结合物理衰变和生物排泄： 1
TE

= 1
TB

+ 1
t1/2
。

示踪剂选择原则：半衰期不能太短（不够时间成像），也不能太长（增加患者辐射
剂量）。

1.4 射线与物质的相互作用

γ 射线在穿过人体或探测器时，主要发生三种相互作用。这对成像质量（衰减）和

探测原理至关重要。

表 1: Gamma 射线与物质的三种主要相互作用
效应名称 能量范围 机制描述

光电效应
(Photoelectric
Effect)

低能

(< 50 keV)
光子将全部能量转移给内层电子，电

子被射出。光子消失。主要贡献于低能

射线的吸收。概率随原子序数 Z 增加

而增加。

康普顿散射
(Compton Scat-
tering)

中能

(100 keV ∼ 1 MeV)
光子与外层电子碰撞，转移部分能量。
产生一个散射光子（能量降低、方向改

变）和一个反冲电子。这是核医学成像

中最主要的干扰源（噪声）。

电子对效应
(Pair Produc-
tion)

高能

(> 1.022 MeV)
光子与原子核场相互作用，转化为一

个电子和一个正电子。多余能量转化

为动能。

1.4.1 衰减 (Attenuation)

三种效应的综合结果导致射线强度在穿过物质时发生衰减，服从指数规律：

I = I0e
−µx (4)

其中 µ = µPE + µCS + µPP 为线性衰减系数。在 PET 和 SPECT 中，身体组织的衰减
是必须进行校正的重要因素。
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1.5 理想放射性示踪剂的特点

• 能量适中: 70-511 keV。能量太低容易被身体完全吸收（增加剂量且无信号），能
量太高难以被探测器捕获。

• 半衰期适中: 分钟到小时级别。

• 无颗粒辐射: 最好是纯 γ 发射体，不伴随 α 或 β 粒子（这些粒子对组织伤害大且

无法成像）。

• 化学特性: 易于标记生物分子，且不改变生物活性。

2 Anger 相机与平面显像 (Scintigraphy & Anger Cam-
era)
在掌握了放射性核素的物理性质后，本章将介绍如何探测这些射线并形成图像。核

医学最基础的成像设备是 Anger 相机（又称 γ 相机），它是 SPECT（单光子发射计算
机断层成像）的核心组件。

2.1 成像原理：发射 vs. 透射

• 透射成像 (Transmission Imaging): 如 X射线与 CT。射线源在体外，穿过人体
后被探测器接收。图像反映的是人体组织对射线的衰减系数分布（解剖结构）。

• 发射成像 (Emission Imaging): 如核医学（Scintigraphy, SPECT, PET）。放射
性示踪剂进入人体内部，成为内部射线源。探测器在体外捕捉射出的 γ 光子。图

像反映的是示踪剂在体内的放射性分布（这个分布是由代谢、血流等生理功能驱

动的）。

2.2 Anger 相机的系统组件

Anger 相机由四个关键部分组成，光子信号的处理流程如下：

准直器 → 闪烁晶体 → 光电倍增管 (PMT) → 定位逻辑电路

2.2.1 准直器 (Collimator)

准直器通常由铅制成，位于探测器最前端。它就是 γ 相机的“镜头”，保证探测器

永远获取到干净、清晰、方向符合定位逻辑的要求的射线束。

• 作用: 它是成像清晰度的决定性因素。γ 射线是向四面八方发射的，准直器只允许

特定方向（通常是垂直于晶体表面）的光子通过，阻挡（吸收）斜射的光子。如果

没有准直器，无法定位射线来源。

6



• 类型:

– 平行孔 (Parallel hole): 最常用，孔道平行，图像大小与物体距离无关。

– 针孔 (Pin-hole): 用于甲状腺等小器官放大成像。

– 汇聚/发散孔: 用于改变视野大小。

关键权衡 (Trade-off): 分辨率 vs. 灵敏度准直器的设计总是面临矛盾。

• 分辨率 (Rg): 孔越小、孔越长 (l)，准直效果越好，分辨率越高（Rg 数值越小越

好）。

Rg ≈
d(leff + r)

leff
(5)

其中 d 是孔径，leff 是孔长，r 是源到准直器的距离。

• 灵敏度 (ξ): 孔越大、孔越短，通过的光子越多，灵敏度越高。

ξ ∝
(

Kd2

l(d+ h)

)2

(6)

其中 h 是隔壁厚度。

• 结论: 想要看得清（高分辨率），通常需要牺牲信号强度（低灵敏度）。

2.2.2 闪烁晶体 (Scintillation Crystal)

• 材料: 通常使用掺铊的碘化钠晶体 NaI(Tl)。

• 作用: AngerCamera 最终依然需要对可见光成像。闪烁晶体在这里起到一个光谱
转换的过程：将高能的不可见 γ 光子转化为低能的可见光光子（闪烁现象）。

• 过程: 一个 γ 光子射入晶体 → 光电效应/康普顿散射 → 产生电子 → 激发晶体晶
格 → 释放出数千个可见光光子。这个过程仍然遵循能量守恒，没有外源性能量注
入。可见光的光子数多，单纯是因为超短波长的 γ 射线的单个光子能量远高于可

见光波段的光子。

2.2.3 光电倍增管 (PMT)

• 作用: 将微弱的可见光信号转化为电信号并进行放大。

• 结构:

– 光电阴极 (Photocathode): 接收可见光，发射光电子。

– 倍增极 (Dynodes): 电子逐级撞击，数量呈指数级倍增（放大 106 ∼ 108 倍）。

– 阳极 (Anode): 收集电子流，输出电流脉冲。

• 排布: 多个 PMT 紧密排列在晶体后方（如 3 × 3 或更多阵列），共同探测一次闪

烁事件。
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2.2.4 定位逻辑电路 (Positioning Logic)

这块电路板实现 Anger 相机的核心算法，用于确定 γ 光子在晶体上的击中位置

(X,Y )。这也是核医学平面显像部分最核心的计算考点（笔者认为必考计算题）。

• 原理: 离闪烁点越近的 PMT接收到的光越强，输出信号幅度越大。利用所有 PMT
信号的重心法 (Center of Mass) 计算位置。

• 公式: 假设第 k 个 PMT 的位置为 (xk, yk)，其输出信号幅度为 ak。

X =
1

Z

∑
k

xkak, Y =
1

Z

∑
k

ykak (7)

其中 Z 信号代表总能量：

Z =
∑
k

ak (8)

• Z 脉冲的作用 (Energy Window): Z 信号不仅用于归一化位置，还代表了光子

的能量。通过设置能窗 (Energy Window)，可以剔除能量过低的光子（通常是
发生过康普顿散射的噪声光子），从而提高图像对比度。

2.3 数据采集模式 (Acquisition Modes)

笔者在此粗略而大胆地将核医学涉及的生理过程分为三类：代谢相关的生理过程

（特别如核素标记的葡萄糖追踪肿瘤代谢）、灌注相关的生理过程（如肾小管重吸收、血

流灌注等）、机械生理过程（如心脏的跳动等）。我们刚刚解决了采集生理过程塑造的核

素空间分布的问题，为了对这三种生理过程驱动核素的空间分布随时间的变化进行正确

的采集，我们需要不同的采集方式。

1. 静态采集 (Static/Single Frame/直接拍):

• 类似于拍照片。采集一定时间或一定计数的光子，形成一张二维分布图。

• 计算机内表现为一个矩阵，像素值代表计数。

2. 动态采集 (Dynamic Frame):

• 类似于拍视频。连续采集多帧图像，用于观察生理过程的变化（如肾脏排泄
功能）。

3. 门控采集 (Gated Acquisition):

• 专用于心脏成像。利用 ECG（心电图）的 R 波作为触发信号。

• 将一个心动周期分成若干帧（如 16 帧），每次心跳的数据叠加到对应的帧中。

• 目的是消除心脏跳动造成的运动模糊，观察心壁运动。
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2.4 SPECT：从平面到断层

• 定义: Single Photon Emission Computed Tomography (单光子发射计算机断层成
像)。

• 为什么理解了 CT 就不用学 SPECT 了:

– 平面显像 (Scintigraphy): 也就是上述的 Anger 相机直接成像，得到的是三
维物体在二维平面的投影（类似于普通 X 光片，只不过是发射源在内部）。

– SPECT:将 Anger相机安装在旋转机架上，围绕患者旋转 360度，采集多个
角度的投影数据。然后利用重建算法（类似于 CT 的算法）重建出人体内部
的三维断层图像。

– 可以看到，如果将第二节所讲的 Scintigraphy 学得像 X-ray 那么熟练，怎么
把 X-ray 迁移到 CT 的，就怎么学 SPECT 即可。

• SPECT 的优势: 解决了平面显像中前后组织重叠的问题，能够提供深度的位置
信息。

2.5 本章小结与思考

• Anger 相机通过物理准直（铅栅）来确定光子方向，这导致了灵敏度非常低（因为
绝大多数光子都被准直器挡住了）。

• 这一点是 SPECT与 PET的根本区别之一。下节我们将看到，PET 如何通过“电
子准直”（符合探测）来抛弃物理准直器，从而获得更高的灵敏度和分辨率。

3 正电子发射断层成像 (PET)
在上一章我们看到，SPECT 虽然能够进行断层成像，但受限于 Anger 相机前方的

铅制准直器（物理准直），大部分光子都被挡掉了，导致灵敏度极低。PET（Positron
Emission Tomography）的出现巧妙地利用了正电子衰变的物理特性，抛弃了物理准直
器，实现了灵敏度和分辨率的质的飞跃。

3.1 基本物理原理：正电子与湮灭

PET成像并不直接探测正电子，而是探测正电子“消失”的时候发出的“遗言”——
湮灭光子。
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3.1.1 正电子发射 (Positron Emission)

如第一章所述，富质子核素（如 18F,11 C,15 O）不稳定，发生 β+ 衰变：

p → n+ e+ + ν (9)

关键点：此时正电子（e+）刚刚诞生，具有一定的动能。

3.1.2 湮灭反应 (Annihilation)

这是 PET 的物理核心。

1. 游走: 正电子在组织中移动一段距离（几毫米），直到动能耗尽。

2. 结合: 静止的正电子遇到周围的一个电子（e−）。

3. 湮灭: 正反物质结合，质量转化为能量。

e+ + e− → γ + γ (10)

4. 产物特征 (考试重点):

• 能量守恒: 产生两个 γ 光子，每个能量为 511 keV（来自电子静止质量m0c
2）。

• 动量守恒: 两个光子互成 180 度（Back-to-back）反向飞出。

3.2 电子准直 (Electronic Collimation)

这是 PET 区别于 SPECT 最本质的特征。

• 原理: 由于两个光子是同时（Simultaneously）且反向（180 度）飞出的，如果我们
探测到一对互成 180 度的探测器同时响了，那么我们就可以确定：发射源一定在
这两个探测器的连线上。

• 优势: 我们不再需要铅栅来过滤方向，而是通过时间符合逻辑来确定方向。这使得
探测器的灵敏度提高了 1-2 个数量级（100 倍左右）。

• 响应线 (LOR, Line of Response): 连接两个符合探测器的虚拟直线。系统记录
所有的 LOR，用于后续重建。

3.3 符合探测与噪声 (Coincidence Detection & Noise)

PET 系统通过检测“符合事件”（Coincidence Event）来工作。系统设定一个极短
的时间窗（Time Window, 如 6-12 ns），只有当两个光子落在这个窗内，才被视为一个
事件。然而，并非所有符合都是有用的。
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1. 真符合 (True Coincidence): 一次湮灭产生的两个光子未受干扰，直接被一对探
测器捕获。这是我们想要的信号。

2. 散射符合 (Scattered Coincidence): 光子在体内发生了康普顿散射，方向改变，
但仍被探测到。

• 后果: 重建出的 LOR 是错误的，导致图像模糊、对比度下降。

• 校正: 需要利用能量窗（Energy Window）来剔除能量损失较大的散射光子，
或使用模型估算。

3. 随机符合 (Random Coincidence): 两次完全不相关的湮灭事件，各自发出的一
个光子偶然在同一时间窗内击中了探测器。

• 后果: 产生全图均匀的背景噪声。

• 计算: 随机符合率 Rrandom = 2τR1R2（τ 为时间窗，R 为单计数率）。

• 校正: 延迟窗技术（Delayed Window Method）。

3.4 空间分辨率的物理极限 (Physical Limits of Resolution)

即便探测器做得再完美，PET 图像的清晰度也受限于物理学原理。

3.4.1 正电子射程 (Positron Range)

• 问题: 我们想看的是核素的位置（代谢发生地），但探测器看到的是湮灭的位置（光
子发射地）。两者之间有一段距离（正电子跑了一段路才死）。

• 影响: 导致图像模糊。18F 的射程较短（∼ 0.6 mm），而 15O 或 82Rb 的射程较长，
图像更模糊。

3.4.2 非共线效应 (Non-collinearity)

• 问题: 湮灭时正负电子并非绝对静止（还有一点残余动量），导致两个光子并非严
格的 180◦，可能有 ±0.25◦ 的偏差。

• 影响: 探测器直径越大（如全身扫描仪），角度偏差导致的定位误差越大（Error ≈
0.0022×D）。

3.5 数据采集与重建技术

3.5.1 正弦图 (Sinogram)

这是 PET 原始数据的存储格式。横轴代表距离（探测器通道），纵轴代表角度。正
弦图中的一个点代表一条 LOR。
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3.5.2 2D vs. 3D 采集模式

• 2D 模式: 在探测器环之间插入铅制隔板（Septa）。只允许同一环内的符合，屏蔽
跨环散射。

– 优点：散射少，定量准确。

– 缺点：灵敏度低。

• 3D 模式: 撤去隔板（No Septa）。允许所有可能的跨环符合。

– 优点：灵敏度极高（增加了 5-10 倍）。

– 缺点：散射和随机符合大幅增加，需要强大的计算机进行校正。现代 PET多
为 3D 模式。

3.5.3 Time of Flight 技术 (TOF)

• 原理: 传统 PET 只知道事件发生在 LOR 上，不知道具体在哪一点。TOF-PET
通过测量两个光子到达探测器的时间差 (∆t)，可以推算出湮灭点距离中心的距离
(d = c ·∆t/2)。

• 效果: 虽然目前的时间分辨率（ 300-500 ps）还不足以精确定位（误差几厘米），但
足以极大地限制位置范围，从而显著提高信噪比 (SNR)。

3.6 临床应用与 PET-CT

单纯的 PET 图像只有功能信息（哪里亮代表哪里代谢高），缺乏解剖结构信息（看
不清是哪个器官）。

• PET-CT: 将 PET 和 CT 整合在同一台机器上。CT 提供解剖地图和衰减校正图，
PET 提供生化导航。

• FDG (氟代脱氧葡萄糖): 最常用的示踪剂。利用“瓦尔堡效应”（肿瘤细胞异常
嗜糖），FDG会在肿瘤处高聚集，从而在图像上形成热点。用于肿瘤分期、转移灶
寻找等。
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Appendix I - Review on Fessler’s paper & Lecture 6
Author: Gemini

引言：从物理准直到电子准直

SPECT 的局限在于它必须依赖厚重的铅制准直器来过滤光子方向，这导致超过
99% 的光子被浪费了。PET 的出现不仅是为了探测正电子，更是为了引入一种全新的
探测机制——电子准直 (Electronic Collimation)，从而实现灵敏度的数量级提升。

物理基础与极限分辨率

PET 成像的基础链条是：衰变 → 正电子游走 → 湮灭 → 双光子发射。这一过程中
的物理特性决定了 PET 图像清晰度的 ** 极限 **。

1. 正电子射程 (Positron Range)

• 现象: 正电子从原子核射出后，必须在组织中消耗掉动能（动能转化为势能）才能
与电子结合发生湮灭。这导致湮灭点 ̸= 发射点。

• 影响: 图像模糊。模糊程度取决于核素的能量 (Emax)。

• 对比:

– 18F: 能量低，射程极短 (∼ 0.6 mm)，图像最清晰，是临床金标准。

– 15O,82 Rb: 能量高，射程长，图像固有模糊较大。

2. 非共线效应 (Non-collinearity)

• 现象: 正负电子湮灭时，并非处于绝对静止，仍存留微小的动量。根据动量守恒，
产生的一对光子并非严格的 180◦，而是呈现高斯分布（FWHM ≈ 0.5◦）。

• 定位误差公式:
∆nc ≈ 0.0022×D (11)

其中 D 是探测器环的直径。

• 结论: 扫描仪孔径越大（如全身 PET vs 动物 PET），非共线效应导致的定位误差
越大。这是物理规律，无法消除。
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符合探测原理 (Annihilation Coincidence Detection, ACD)

电子准直 (Electronic Collimation)

系统不需要铅栅。如果在极短的时间窗（Time Window, 如 6-12 ns）内，两个相对
的探测器同时探测到光子，系统逻辑判定：事件发生在这两个探测器的连线（LOR）上。

三种符合事件 (Types of Coincidences)

这是 PET 噪声分析的核心，必须区分：

1. 真符合 (True): 一次湮灭产生的一对光子，未受干扰，同时被探测。→有用信号。

2. 散射符合 (Scatter): 光子在体内发生了康普顿散射（方向改变、能量损失），但
仍落在时间窗内。

• 后果: 定位到错误的 LOR，导致图像对比度下降。

• 特征: 分布较为平滑，但在体宽处更严重。

• 抑制方法: 设置能窗 (Energy Window)（如 350-650 keV），剔除能量损失
过大的散射光子。

3. 随机符合 (Random): 两次不相关的湮灭事件，各自发出的一个光子偶然在同一
时间窗内被捕获。

• 后果: 全图均匀的背景噪声，导致定量高估。

• 规律: 与单计数率的平方成正比。

• 公式: Rrandom = 2τR1R2 （τ 为时间窗宽度）。这意味着如果注射剂量太大，

随机符合会剧增。

PET 探测器技术 (Detector Technology) [重点升级]

理想的 PET 探测器需要：高阻止能力（Stopping Power）、高能量分辨率（剔除散
射）、高时间分辨率（减少随机符合，支持 TOF）。

1. 闪烁晶体材料 (Scintillation Crystals)

晶体是探测器的“心脏”。课件中对比了主要材料，需重点记忆 BGO 和 LSO 的区
别：

• BGO (锗酸铋):

– 优点: 密度极大 (7.13 g/cm3)，阻止 511 keV 光子的能力最强（探测效率高）。

– 缺点: 发光效率低（暗），衰减时间长（慢，不适合高计数率）。
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• LSO (硅酸镥): 现代 PET 的主流选择。

– 优点: 密度较高，且发光亮、速度快（衰减时间 40 ns vs BGO 的 300 ns）。

– 意义: 速度快意味着可以缩小符合时间窗，大幅降低随机符合，并支持 TOF
技术。

2. 块探测器设计 (Block Detector) [必考机制]

为了降低成本，我们不可能给每根细小的晶体条都配一个 PMT。1986 年发明的
Block Detector 解决了这个问题：

• 结构: 将一块大晶体切割成许多小方阵（如 8× 8），但在底部保留相连。后面仅连

接 4 个 PMT。

• 光导 (Light Sharing): 切割缝隙深度不同，控制光在晶体内的扩散分布。

• Anger Logic 再次登场: 利用 4 个 PMT (A,B,C,D) 接收到的光量比例来定位光
子究竟击中了哪一根小晶体。

X =
(B +D)− (A+ C)

A+B + C +D
, Y =

(A+B)− (C +D)

A+B + C +D
(12)

• 局限: 这种“多对一”的耦合导致高计数率下有死时间 (Dead Time) 问题，且难
以分辨极小的晶体。

3. 下一代技术: SiPM (硅光电倍增管)

课件提及了 APD 和 SiPM。它们是固态探测器，体积小、电压低、不受磁场影响
（这是 PET-MRI 能实现的关键）。SiPM 正逐渐取代 PMT，实现“一对一”耦合，彻
底消除 Block Detector 的局限。

数据采集模式：2D vs. 3D

这是一个基于硬件结构的根本性选择。
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2D 模式 3D 模式

硬件结构 探 测 器 环 之 间 插 入 铅 隔 栅
(Septa)。

撤去隔栅 (No Septa)，全开放。

探测原理 仅允许同一环或相邻环的符合。

物理屏蔽了跨环的射线。

允许所有角度的斜射符合（跨环）。

灵敏度 低。 极高（提高 5-10 倍）。

噪声 散射和随机符合较少，数据较干

净。

散射和随机符合剧增，严重依赖
算法校正。

现状 早期机器多用。 现代机器计算能力强，主要采用

3D 模式以减少辐射剂量或扫描
时间。

总结：从 Anger Camera 到现代 PET

• 我们从 Anger Camera 的单光子探测（需要物理准直，效率低）进化到了 PET 的
符合探测（电子准直，效率高）。

• 为了实现高分辨率，我们将晶体切得越来越细；为了省钱，我们设计了 Block De-
tector 利用 Anger Logic 复用 PMT。

• 为了看得更准，我们从 BGO 换成了 LSO（更快、支持 TOF）。

• 为了看得更快，我们拔掉了隔栅（Septa），全面进入 3D 采集时代。
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